
Feasibility of a Keystroke Timing Attack
on Search Engines with Autocomplete

John V. Monaco
Naval Postgraduate School

Abstract—Many websites induce the browser to send network
traffic in response to user input events. This includes websites
with autocomplete, a popular feature on search engines that
anticipates the user’s query while they are typing. Websites with
this functionality require HTTP requests to be made as the query
input field changes, such as when the user presses a key. The
browser responds to input events by generating network traffic
to retrieve the search predictions. The traffic emitted by the
client can expose the timings of keyboard input events which
may lead to a keylogging side channel attack whereby the query
is revealed through packet inter-arrival times. We investigate the
feasibility of such an attack on several popular search engines
by characterizing the behavior of each website and measuring
information leakage at the network level. Three out of the five
search engines we measure preserve the mutual information
between keystrokes and timings to within 1% of what it is on the
host. We describe the ways in which two search engines mitigate
this vulnerability with minimal effects on usability.

I. INTRODUCTION

It is becoming increasingly apparent that preventing side
channel attacks is a major security challenge. The unintended
leakage of information between processes can expose secrets,
enable unauthorized access, and violate user privacy. Part of
this difficulty stems from the difficulty in reasoning about the
physical systems upon which software is executed [1].

Many side channel attacks exploit device behavior. This in-
cludes microarchitectural attacks, which expose hardware state
leaked through the timing of software events on a device [2],
and physical side channels, which expose hardware state
through external measurements such as power consumption [3]
and acoustics [4].

A class of side channel attacks that exploit human behavior
has also emerged. Such attacks recognize a user’s actions from
their behavior sensed either externally or on the device. This
includes attacks that recognize the keys a user types on a
keyboard or mobile device based on the position of the hands
sensed through channels such as WiFi signal distortion, motion
of the device, and timings of keystrokes [5].

The manifestation of human behavior in network traffic can
enable such attacks remotely, which have primarily leveraged
the sizes of encrypted packets [6]. We explore how packet
inter-arrival time might also leak information about user
behavior. Many websites respond to user input events in near-
real time, which requires low latency communication with the
server. In this model, the timing of input events is exposed in
the network traffic from the client to the server.

Autocomplete is a feature that has been incorporated into
almost every major search engine. This service provides

suggested queries to the user as they type based on the par-
tially completed query, trending topics, and the user’s search
history [7]. Intended to enable the user to find information
faster, autocomplete requires the user’s client to communicate
with the server when input events are detected. As a result,
the user’s keystroke timings can manifest in network traffic,
potentially enabling a remote keylogging side channel attack
[5]. We determine the feasibility of such an attack in this work.

Considering the autocomplete feature of several popular
search engines, we aim to address the following questions:

1. How much information about a search query is leaked
in the network traffic generated by autocomplete? Prior work
has measured the mutual information, or information gain,
between keyboard keys and keystroke timings observed on
the host [8], [5]. This work has assumed that these timings
can be detected and are faithfully preserved in packet inter-
arrival times. We test this assumption using actual network
traffic generated by several major search engines and measure
the amount of information that is lost after the keyboard events
pass through the web browser in transit to the server.

2. What kind of event processing model is used by major
search engines to implement autocomplete? Search engines,
and dynamic websites in general, differ in the way input
events are processed and communicated to the server. In this
regard, characterizing the input event processing model of each
search engine will enable a better understanding of how web
application design considerations can lead to or mitigate side
channel attacks.

3. What defenses that are currently implemented, if any,
mitigate such an attack? Towards an effective defense against
keylogging side channels, we identify ways in which a search
engine is less vulnerable to attack. Specifically, we are inter-
ested in defense mechanisms that can mitigate such an attack
without greatly decreasing usability.

II. BACKGROUND AND RELATED WORK

A. Keylogging side channels

A keylogging side channel attack aims to recover the
keystrokes of a victim using a channel outside of the intended
keyboard event processing pipeline. Such attacks date back 75
years when it was demonstrated that keystrokes on a teletype
terminal emitted a characteristic electromagnetic spike. They
have since been demonstrated for a wide range of modalities
such as acoustics, seismic activity, and hand motion [5]. These
attacks generally fall into two different categories: spatial
attacks, which utilize a channel that leaks information about



where a key is located on the keyboard, and temporal attacks,
which utilize a channel that leaks only the times of key press
and release events.

Two main problems arise when trying to determine
keystrokes from a side channel. The first is keystroke detec-
tion, a binary classification problem. In a packet trace, this
involves deciding whether each packet contains a keystroke
or not. The second problem is key identification: given that
a keystroke occurred, determine which key it was. This is a
multi-class classification problem.

Temporal keylogging attacks attempt to recognize which
keys a user typed based only on the key press and release
times. This attack may utilize timings sensed through acous-
tics, spikes in CPU load, or network traffic. In this regard,
websites that emit network traffic in response to keyboard
events, such as SSH in interactive mode or a search engine
with autocomplete, may unintentionally leak information about
keyboard events even when traffic is encrypted.

Temporal keylogging attacks are enabled by the similarity
with which different people type on a keyboard. The typist
is generally quicker to press keys that are far apart compared
to keys that are close together, a consequence of having to
reposition the hand or finger to strike neighboring keys [9].
This inverse scaling between key-distance and key-press la-
tency is common among touch typists [10], enabling general
inferences to be made about which keys were pressed based
only on the time interval between key-presses.

The feasibility of a temporal keylogging attack is measured
by the mutual information between timings and keys. Mutual
information is given by

I [k; y] = H0 [k]−H1 [k|y]

where H0 is the intrinsic entropy of symbol k and H1 is the
entropy of k conditioned on observation y. In this work, k
is an ordered key pair, or bigram, such as “TH” and y is
a time interval between keyboard events, such as the time
from pressing “T” to pressing “H”. The mutual information
measures the ability to predict keys from timings.

B. Web search autocomplete

Many search engines have autocomplete functionality. With
this feature, a list of suggested queries is presented to the user
as the query input field changes. When the user presses a key
on the keyboard, the client makes a request to the server and
the server responds with a list of suggested search queries [11].
This results in a series of HTTP requests following keyboard
events, such as those shown in Figure 1. In this example, an
HTTP GET request is made upon each key press that results
in a visible change to the query input field, i.e., modifier keys
are ignored. The server response contains a list of suggestions
aimed to anticipate the user’s complete query.

Previously, it has been demonstrated that the size of the
server response can leak a considerable amount of information
about the query [12]. For each request, the attacker must only
enumerate each possible key until a response with the same
size is found, a search space that grows linearly with query

size. However, this kind of attack is application dependent
(among different search engines), time dependent (since sug-
gestions change over time according to trending searches [7]),
and user dependent (since suggestions generally depend on a
user’s search history [7]).

Using both outgoing and incoming traffic over Tor, traffic
patterns could enable fingerprinting a limited set of keywords
contained in the query [13]. This technique is also application
dependent and requires a dictionary of target queries to be
built. Unlike these works, we consider unrestricted queries and
only examine the traffic emitted by the client.

The keystroke timings leaked by “on the fly” web apps, such
as Google autocomplete, were modeled in [14]. This work
investigated whether the latency distributions of particular
bigrams could be recovered from network traffic generated
by an autocomplete service. These may then be used in
a keystroke biometric imitation attack. However, this work
assumed that the traffic was unencrypted and measured only
whether the distribution of time intervals associated with a
particular bigram could be recovered. In the current study, we
assume that the traffic is encrypted and measure the attacker’s
ability to identify the query.

III. DATA COLLECTION METHODOLOGY

We assume a remote passive attacker that can observe
encrypted network traffic from a victim who types a query
on a search engine with autocomplete. We built a system that
captures network traffic while previously recorded keystrokes
are replayed in the browser as they would be typed by a human
subject. Since we aim to characterize only search engine
behavior, and do not consider other network effects such as
routing and buffering delays, we capture on the interface of the
victim’s machine and assume there is no background traffic.
In future work, we plan to relax these assumptions.

The measurement setup consisted of: a keystroke dataset
previously collected from human subjects, browser automation
with Selenium WebDriver, and a low latency system to replay
the keystrokes. Our data collection methodology assumes the
victim types a query without corrections or selecting a search
suggestion before the complete query is entered. We used a
subset of a publicly available keystroke dataset collected from
over 100k users typing excerpts from the Enron email corpus
and English gigaword newswire corpus [15]. The timestamps
in this dataset have millisecond resolution. From this dataset,
we randomly selected 1000 phrases that contain between 5
and 50 printable characters, i.e., we do not consider sequences
containing deletions or keys that may cause the cursor to
change position, such as arrow keys. This selection contains
a wide variety of typing speeds, ranging from 1.5 to 22 keys
per second (KPS, averaged over each sample).

Each capture proceeded as follows. The web browser was
opened and cookies cleared before starting the capture process
(tshark). One second after the capture began, the website was
loaded using the web driver. There was then a two second
delay before replaying the keystrokes. The keystroke sequence
was replayed by writing the sequence of key events to the



Keyboard 
Events

HTTP 
Requests

GET
 /…

?q=
E&

GET
 /…

?q=
Ex&

GET
 /…

?q=
Exa

&

GET
 /…

?q=
Exa

m&

GET
 /…

?q=
Exa

mp&

GET
 /…

?q=
Exa

mpl
&

GET
 /…

?q=
Exa

mpl
e&

RShift E E RShift X X A A M M P P L L E E

Autocomplete 
Suggestions

… …

Fig. 1. Search autocomplete example. As a search query is entered, the client submits a request with the partially completed query and the server responds
with a list of suggested queries. A request is only made upon visible changes to the query box, such the key press of a printable character (↓=press, ↑=release).

uinput device with delays between each event that corre-
spond to the original keystroke sequence. The data collection
was performed on an Ubuntu Linux desktop machine with
kernel version 4.15 compiled with the CONFIG_NO_HZ=y
option, which omits clock ticks when the CPU is idle. This
ensured keyboard event times were replayed with high fidelity
and not quantized due to the presence of a global system
timer. Traffic was decrypted by setting the SSLKEYLOGFILE
environment variable before each capture, which specifies a
file to record the TLS session keys. Ground truth for the
purpose of measuring keystroke detection accuracy and mutual
information was obtained using the decrypted packets.

We collected 1000 queries on each of five different search
engines: Google, Bing, DuckDuckGo (DDG), Baidu, and Yan-
dex, all of which implement autocomplete albeit in different
ways. To understand how the browser itself might affect net-
work timings, the data collect was performed in both Chrome
(v.71) and Firefox (v.64). All the search engines considered
except Baidu currently support HTTP/2.

The dataset we collected contains a total of 10k queries
(1000 keystroke sequences × 5 search engines × 2 web
browsers), obtained over approximately 5 days. During this
time, we did not experience any rate limiting. However, some
captures did either miss some of the outgoing traffic or fail to
completely decrypt (approximately 1%). These unsuccessful
captures were repeated until the decrypted queries matched
the original keystroke sequence.

IV. ANALYSIS OF WEBSITE BEHAVIOR

We characterize several aspects of search engine autocom-
plete behavior that, to our knowledge, have not been examined
previously. We then evaluate the ability to detect keystrokes
based on packet size and the ability to identify keystrokes from
packet inter-arrival times.

A. Packet size

The problem of keystroke detection involves deciding
whether each captured packet contains a keystroke event or
not. As the user types, the client repeatedly sends HTTP GET

requests that contain the partially completed query. The size of
each request increases over the previous one since it contains
the cumulative text that the user has typed. As a result, the
sequence of packet sizes increases by about 1 byte with each
request. All of the search engines we considered followed this
behavior with some exceptions noted below.

We characterize the sequence of packet sizes emitted by
each website by normalizing to the size of the first packet.
That is, let si be the size in bytes of the ith packet and s0
the size of the first packet. Relative packet sizes are given by
s1−s0, s2−s0, . . .. This sequence characterizes packet size as
a function of query length, invariant to the size of the initial
request which may vary across hosts due to different sized
identifiers, authentication tokens, user agent string, etc. The
relative packet sizes are shown in Figure 2.

We observed some variations to this general behavior. To
initialize the autocomplete service, a website may include
some additional parameters in the first request. These initial-
ization parameters are then removed in subsequent requests.
As a result, packet size initially decreases and then increases
linearly thereafter. Both Bing and DuckDuckGo exhibit this
behavior, noticeable by the sharp decline in packet size after
the first request. In contrast, we found that Google includes
additional parameters after a threshold is reached: after about
12 characters, an additional “gs_mss” parameter with the
partially completed query at that point is included in each
additional request. This results in a sudden increase of about
20 bytes (8 bytes for “&gs_mss=” and 12 bytes for the query),
again increasing by about 1 byte per character thereafter.

Unlike other search engines, the autocomplete packet sizes
of Baidu increase at about 2 bytes per character. This is due to
the previous partially completed query being included in each
request. For example, if the user types “cat”, the request after
pressing “t” will contain “?wd=cat&pwd=ca” where “pwd”
refers to the previous partial query and “wd” to the current.

From these observations, keystroke detection may be ac-
complished by finding an increasing sub-sequence of packet
sizes within the complete trace. Assuming that the time of



0 10 20 30 40 50
Query length (characters)

50

0

50

100

150
Re

la
tiv

e 
siz

e 
(b

yt
es

)
google
bing
duckduckgo
baidu
yandex

Fig. 2. Relative packet sizes of each search engine.

page load is known by the attacker and keystroke detection
is applied only thereafter, we detect keystrokes by finding the
longest increasing sub-sequence (LIS) of packet sizes, a prob-
lem that can be solved efficiently by dynamic programming.
The LIS achieves near-perfect keystroke detection accuracy (F-
score > 99%) for every website except Bing and DuckDuckGo.
Taking into account the website specific behaviors above, such
as the initial decrease in packet size, would further improve
accuracy. The F-scores are summarized in Table I.

B. Event processing model

The event processing model describes the way in which
the website detects and processes input events before making
a request for autocomplete suggestions. Among the websites
we examined, we found there are generally two kinds of event
processing models: callback and polling.

In a callback model, an input event triggers a callback
function responsible for sanitizing the query text and making
an HTTP request to retrieve the list of autocomplete sug-
gestions. The delay from the time of the input event to the
time of request depends primarily on the execution time of
the callback function. If this execution time does not vary
between successive events, the time intervals between events
is faithfully preserved in packet inter-arrival times.

In a polling model, the contents of the query input field are
periodically checked at fixed intervals according to a timer
cycle. When a change in the query field is detected, an HTTP
request for autocomplete suggestions is made. Thus, the delay
from input event to request depends on where in the cycle
the event occurred. The packet inter-arrival times are closely
aligned to some multiple of the timer period.

The event processing model introduces perturbations to
the timing of keyboard events as seen in packet inter-arrival
times. Perturbations may be caused by sampling noise, low
frequency polling, or the presence of background processes
(in the browser or on the host) with higher priority. We
consider the spectral coherence to measure how much noise
the event processing model introduces to the event times in
each website. The spectral coherence measures the fractional
part of the power spectral density of the keyboard event times
that is preserved in packet timings. This reveals not only
how much the keyboard event times are perturbed, but at
what frequencies. The spectral coherence of each website is

0.0

0.5

1.0 google

0.0

0.5

1.0 bing

0.0

0.5

1.0

Co
he

re
nc

e duckduckgo

0.0

0.5

1.0 baidu

0 100 200 300 400 500
Frequency (Hz)

0.0

0.5

1.0 yandex

Fig. 3. Spectral coherence between keystroke events and autocomplete
network traffic in Chrome (left) and Firefox (right).

shown in Figure 3. From this figure, we can make several
observations:

• There is a gradual decay in coherence for Google, Duck-
DuckGo, Baidu, and Yandex. This indicates that these
websites use a callback model, which faithfully preserves
lower frequencies.

• That decay is generally steeper in Firefox than in Chrome.
This indicates higher-frequency variations in the timing
of input events in Firefox compared to Chrome.

• The spectral coherence quickly drops to 0 after 10 Hz
for Bing in both browsers. This indicates a polling
mechanism with clock rate around 100 ms, which cuts
off frequencies above that range.

• There are apparent peaks at multiples of 125 Hz. We
verified that these artifacts are present in the original
keystroke dataset and were not introduced by our mea-
surement setup. They are likely due to USB polling which
is 125 Hz by default for low speed devices.

We examined the web page source code to verify the event
processing model of each search engine. This involved beau-
tifying the obfuscated JavaScript, setting breakpoints at places
where XMLHttpRequest objects are created, and toggling
callbacks to keydown and keyup input events. This revealed
that Google, Baidu, and Yandex use callbacks on input
events, DuckDuckGo uses a callback on keyup events, and
Bing uses a polling mechanism with 100 ms timer. Note that
input events are triggered immediately following keydown
events [16]. Baidu additionally has a polling mechanism with
200 ms timer, seemingly as a fallback mechanism for when
autocomplete requests are not triggered by other input events.
Results are summarized in Table I.

C. Censoring

A temporal keylogging attack depends on the ability to
observe keyboard event times as a victim types. The network
traffic generated by a search engine autocomplete service
reveals these timings as the client makes HTTP requests



Polling process

Key-press events

A

A C

!

B

! !

Censored 
interval

HTTP Requests A 2! ABC

BC

Key-release events

Key-press events A C

Time

B
Censored interval

HTTP Requests AB

A CB

ABC

Fig. 4. Keyboard event time censoring. Polling censoring (top) occurs when
typing speed exceeds polling rate in a polling event model. Rollover censoring
(bottom) occurs when keystrokes overlap in a key-release callback model.

upon user input events. However, for some websites, if typing
occurs too fast, characters could be merged into the same
request and a single packet is generated for multiple keyboard
events. When this occurs, some of the keyboard event times
become censored1 at the network level since they cannot be
observed. The ability to perform a temporal keylogging attack
is diminished.

We identified two ways in which keyboard event times may
be censored. The first is through polling, when the typing
speed of the victim exceeds the polling rate. This situation
is shown in Figure 4 (top). The query input field is monitored
for changes with polling interval T . When two key presses
occur within a single polling window, the first event becomes
censored since the following autocomplete request contains
two additional characters instead of one.

Censoring can also occur in a callback model with hooks
registered to keyup events. In such a model, censoring
occurs when two consecutive keystrokes overlap, a typing
phenomenon known as key rollover. An example is shown
in Figure 4 (bottom). Key “B” is pressed after key “A” is
pressed but before “A” is released. When key “A” is released,
the query input field already contains “ab” since characters
appear immediately following the keydown events. When
the autocomplete request is made after releasing key “A”, it
contains the partial query “ab”. Following this, key “B” is
released; however this results in no visible changes to the
contents of the query input field, so no request is made. As a
result, the release of key “B” is censored.

Typing speed can affect both kinds of censoring. In a polling
model, events become censored when two key press events
occur within the same polling window, which is more likely
to occur as typing speed increases. In a callback model trig-
gered by keyup events, events become censored due to key
rollover, a phenomenon characteristic of faster typists [15]. We
measured the censoring rate (proportion of censored events) of
Bing, which implements a polling model, and DuckDuckGo,
which implements a keyup callback model. The positive
relationships between censoring rates and typing speed are

1We borrow this term from survival analysis, a branch of statistics. In
survival analysis, censoring occurs when the time of an event is not known.

0 2 4 6 8 10 12
Average typing speed (Keys/Second)

0

20

40

60

80

100

Ce
ns

or
ed

 e
ve

nt
s (

%
)

bing
duckduckgo

Fig. 5. Censoring rates of Bing and DuckDuckGo as a function of average
typing speed. Each point is a keystroke sequence.

shown in Figure 5, an indication that faster typists are less
prone to attack in both models. The queries in the keystroke
dataset we used had an average 27% rollover ratio, calculated
by the proportion of overlapping to total number of keystrokes.

D. Information gain

A temporal keylogging attack exploits the mutual informa-
tion between time intervals and keyboard keys. In a remote
attack, mutual information is diminished as noise is introduced
to the packet inter-arrival times. This may occur through
variations in latency. The latency is the delay from the input
event on the victim’s host to the observed packet arrival time.

Keyboard events are temporally buffered on the client
(either implicitly or explicitly) from the time the event occurs
until an HTTP request is made. In a callback model, this
depends primarily on the time to sanitize the query and con-
struct the request. In a polling model, this depends primarily
on where in the polling window the event occurred. In both
models, latency may also depend on request number: the delay
of the first event is generally greater than the following events
due to the time to setup the autocomplete service or to ready
the user interface for search predictions [14].

As the latency varies, this introduces noise to the packet
inter-arrival times. This form of obfuscation was previously
proposed as a defense against temporal keylogging attacks
[5], [17]. As more noise is introduced, the mutual information
between time intervals and keys decreases. Note that obfusca-
tion occurs only through variations in latency; if the latency
remains constant, the time intervals between successive input
events are preserved in the packet inter-arrival times.

The mean and standard deviation latency is shown for each
website in Table I. Websites that implement a callback model
have noticeably lower latency deviations than Bing, which
implements a polling model. And while latencies are generally
larger in Firefox than in Chrome, there is no consistent
relationship between variation in latency and browser. The
correlation between time intervals on the host and packet inter-
arrival times is also shown in Table I.

We use the relative loss of mutual information to measure
how much each website mitigates the possibility of attack.
That is, let ypre be the time intervals on the host and ypost
be the packet inter-arrival times. The relative loss in mutual



TABLE I
RESULTS SUMMARY. CENSORING MEASURES PROPORTION OF CENSORED EVENTS. DETECTION MEASURES ABILITY TO DETECT UNCENSORED

KEYSTROKES. MI LOSS IS THE REDUCTION IN MI FROM HOST TO NETWORK AND MEASURES THE INCREASED DIFFICULTY OF KEY IDENTIFICATION.

Website Proto. Event model Censoring
Detection (F-score %) Latency (ms) Interval correlation MI loss (%)
Chrome Firefox Chrome Firefox Chrome Firefox Chrome Firefox

Google HTTP2 Callback (keydown) None 99.8 99.7 6.2±3.3 14±10 0.99 0.99 0.0 0.7
Bing HTTP2 Polling (10 Hz) 11% 90.7 90.3 52±29 60±31 0.98 0.98 7.1 6.3
DDG HTTP2 Callback (keyup) 32% 96.5 96.5 5.7±10.9 6.7±6.9 0.99 0.99 0.4 0.1
Baidu HTTP Callback (keydown) None 99.4 99.9 15±20 20±25 0.99 0.99 0.3 0.5

Yandex HTTP2 Callback (keydown) None 99.9 99.0 10±12 13±10 0.99 0.99 0.6 0.5

information is given by 1 − I [k; ypost] /I [k; ypre] . A loss of
0% indicates that the mutual information on the network is
completed preserved to what it was on the host, while a loss
of 100% indicates that there is no shared information between
keyboard keys and the time intervals on the network. These
results are summarized in Table I, considering only uncensored
intervals. With the exception of Bing, the mutual information
on the network is within 1% of what it is on the host.

V. DISCUSSION AND CONCLUSIONS

Search engines that implement autocomplete suggestions
using a keydown-based callback model (Google, Yandex, and
Baidu) are susceptible to the same kind of keylogging side
channel attack as those on the host [8], [18]. Keystrokes can
be detected based on the increasing pattern of packet sizes,
and the key-press time intervals are faithfully preserved in the
packet inter-arrival times. Little information (< 1%) is lost
compared to what would be available on the host. Note, this
result indicates only that if a keystroke timing attack were
successful on the host, then it would succeed on the network.
The success of the attack on the host itself varies among users
[5], and potentially other factors such as hardware, language,
and keyboard layout, which have not yet been studied.

Among the search engines we considered, two seem to
provide mitigation against a remote keylogging attack. Bing,
which uses a polling model with 100 ms timer, has approxi-
mately a 10% censoring rate for a user typing at a speed of
6 keys per second. Not only does the polling model quantize
event times, but it makes it practically infeasible to predict the
keys that become censored. Reducing the polling rate would
further increase censoring, although at the cost of increased
latency to retrieve the autocomplete suggestions.

DuckDuckGo, which uses a keyup callback model, has a
30% censoring rate at a typing speed of 6 keys per second.
While both Bing and DuckDuckGo are resilient to attack due
to the presence of censored events, the keyup callback model
seems to be an effective self-regulating mitigation strategy.
Prior work has shown timing attacks to be more effective
for faster touch typists compared to slower “hunt-and-peck”
typists [5]. The faster typists also exhibit greater rollover [15],
which in a keyup callback model has the effect of censoring
the keyboard event times. Thus, as typing speed increases,
rollover generally increases and so does censoring rate.

Future work will consider the performance of an actual
attack and examine how the relatively low entropy of natural
language could be leveraged to increase attack success.

REFERENCES

[1] C. Herley and P. van Oorschot, “Sok: Science, security and the elusive
goal of security as a scientific pursuit,” in Proc. IEEE Symp. on Security
& Privacy (SP). IEEE, 2017, pp. 99–120.

[2] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, pp. 1–27, 2016.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology — CRYPTO’ 99. Springer, 1999, pp. 388–397.

[4] D. Genkin, A. Shamir, and E. Tromer, “RSA key extraction via
low-bandwidth acoustic cryptanalysis,” in Advances in Cryptology –
CRYPTO 2014. Springer Berlin Heidelberg, 2014, pp. 444–461.

[5] J. V. Monaco, “Sok: Keylogging side channels,” in Proc. IEEE Symp.
on Security & Privacy (SP). IEEE, 2018.

[6] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose, “Phonotactic
reconstruction of encrypted VoIP conversations: Hookt on fon-iks,” in
2011 IEEE Symposium on Security and Privacy. IEEE, may 2011.

[7] “Search using autocomplete,” https://support.google.com/websearch/ an-
swer/106230, Accessed: 2018-12-17.

[8] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on ssh.” in Proc. Usenix Security Symp., 2001.

[9] T. A. Salthouse, “Perceptual, cognitive, and motoric aspects of transcrip-
tion typing.” Psychological bulletin, vol. 99, no. 3, p. 303, 1986.

[10] J. V. Monaco, M. L. Ali, and C. C. Tappert, “Spoofing key-press
latencies with a generative keystroke dynamics model,” in Proc. IEEE
7th Intl. Conf. on Biometrics Theory, Applications and Systems (BTAS).
IEEE, 2015, pp. 1–8.

[11] S. D. Kamvar et al., “Anticipated query generation and processing in a
search engine,” U.S. Patent 7,836,044, 2004.

[12] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in
web applications: A reality today, a challenge tomorrow,” in Proc. IEEE
Symp. on Security & Privacy (SP). IEEE, 2010, pp. 191–206.

[13] S. E. Oh, S. Li, and N. Hopper, “Fingerprinting keywords in search
queries over tor,” Proceedings on Privacy Enhancing Technologies, vol.
2017, no. 4, pp. 251–270, oct 2017.

[14] C. M. Tey, P. Gupta, D. Gao, and Y. Zhang, “Keystroke timing analysis
of on-the-fly web apps,” in Proc. Intl. Conf. on Applied Cryptography
and Network Security. Springer, 2013, pp. 405–413.

[15] V. Dhakal, A. M. Feit, P. O. Kristensson, and A. Oulasvirta, “Obser-
vations on typing from 136 million keystrokes,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems - CHI
18. ACM Press, 2018.

[16] “UI Events,” https://www.w3.org/TR/uievents, Accessed: 2018-12-17.
[17] J. V. Monaco and C. C. Tappert, “Obfuscating keystroke time intervals

to avoid identification and impersonation,” in Proc. Intl. Conf. on
Biometrics (ICB). IEEE, 2016.

[18] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
javascript,” in Proc. 21st Intl. Conf. on Financial Cryptography and
Data Security (FC). IFCA, 2017, p. 11.


